Multivariate Quadratic Nonlinear Regression Model of the Ultimate Pull-Out Load of Electrohydraulic Expansion Joints Based on Response Surface Methodology

Author:

Cai Da,Jin Chenyu,Liang Jie,Li Guangyao,Cui JunjiaORCID

Abstract

Electrohydraulic expansion joining has great potential for joining the light weight and high strength thin-walled pipes due to its high strain rate. Based on the central composite design (CCD) of response surface methodology, multiple experiments of electrohydraulic expansion joining process were performed. The multivariate quadratic nonlinear regression model between process parameters (discharge voltage, wire length, and wire diameter) and the ultimate pull-out load of the joints was established. The results revealed that discharge voltage, wire length and wire diameter all had a significant effect on the ultimate pull-out load. The discharge voltage had the most significant effect. The interaction between the discharge voltage and the wire diameter had a significant effect on the ultimate pull-out load. The optimal parameter combination (discharge voltage = 6 kV, wire length = 10 mm, wire diameter = 0.833 mm) was obtained and verified through the experiments. This study would provide guidance for the choice of the process parameters in real applications.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3