Abstract
Electrohydraulic expansion joining has great potential for joining the light weight and high strength thin-walled pipes due to its high strain rate. Based on the central composite design (CCD) of response surface methodology, multiple experiments of electrohydraulic expansion joining process were performed. The multivariate quadratic nonlinear regression model between process parameters (discharge voltage, wire length, and wire diameter) and the ultimate pull-out load of the joints was established. The results revealed that discharge voltage, wire length and wire diameter all had a significant effect on the ultimate pull-out load. The discharge voltage had the most significant effect. The interaction between the discharge voltage and the wire diameter had a significant effect on the ultimate pull-out load. The optimal parameter combination (discharge voltage = 6 kV, wire length = 10 mm, wire diameter = 0.833 mm) was obtained and verified through the experiments. This study would provide guidance for the choice of the process parameters in real applications.
Funder
Natural Science Foundation of Hunan Province
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献