Surprising Effects of Al2O3 Coating on Tribocatalytic Degradation of Organic Dyes by CdS Nanoparticles

Author:

Ke Senhua1,Mao Chenyue1,Luo Ruiqing1,Zhou Zeren1,Hu Yongming2,Zhao Wei3,Chen Wanping1

Affiliation:

1. Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China

2. Hubei Key Laboratory of Micro–Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan 430062, China

3. School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China

Abstract

With a band gap of 2.4 eV, CdS has been extensively explored for photocatalytic applications under visible light irradiation. In this study, CdS nanoparticles have been investigated for the tribocatalytic degradation of concentrated Rhodamine B (RhB) and methyl orange (MO) solutions. For CdS nanoparticles in a glass beaker, 78.9% of 50 mg/L RhB and 69.8% of 20 mg/L MO solutions were degraded after 8 h and 24 h of magnetic stirring using Teflon magnetic rotary disks, respectively. While for CdS nanoparticles in a beaker with Al2O3 coated on its bottom, 99.8% of the RhB solution was degraded after 8 h of magnetic stirring and 95.6% of the MO solution was degraded after 12 h of magnetic stirring. Moreover, another contrast was observed between the two beaker bottoms—a new peak at 250 nm in UV–visible absorption spectra was only observed for the MO degradation by CdS in the as-received glass beaker, which indicates that MO molecules were only broken into smaller organic molecules in that case. These findings are meaningful for expanding the catalytic applications of CdS and for achieving a better understanding of tribocatalysis as well.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3