Correlation Between Stoichiometry of NbxNy Coatings Produced by DC Magnetron Sputtering with Electrical Conductivity and the Hall Coefficient

Author:

Garzon-Fontecha Angélica,Castillo Harvi,Escobar-Rincón DanielORCID,Restrepo-Parra Elisabeth,de la Cruz Wencel

Abstract

Non-stoichiometric NbxNy coatings, produced in a reactive sputtering process, were analyzed on the basis of their chemical composition (specifically, nitrogen concentration) and its relationship with electrical conductivity. The chemical composition and bonding configuration were examined using X-ray photoelectron spectroscopy (XPS), revealing Nb–N bonds. The stoichiometry variation dependence on the N2 flow was also analyzed, using Auger electron spectroscopy (AES). Without exposing the samples to air, a normal behavior was observed; meaning that the nitrogen concentration in the coatings increased, with an increase in N2 flow. The electrical properties were evaluated and their relationship with nitrogen content in the films was analyzed. The highest conductivity value for all studied samples was observed for the sub-stoichiometric film, NbN0.32, which also exhibited a positive Hall coefficient. It indicated that the conduction was mainly dominated by hole-type carriers. High conductivity at lower nitrogen content was attributed to the fact that, at a low concentration of nitrogen, the effect of impurities, acting as dispersion points for electrons, was lower, increasing the relaxation time. As the main conclusion, the Ar/N2 flow ratio strongly influenced the coatings of stoichiometry and then, this stoichiometry affected, to a great extent, the electrical conduction and the Hall coefficient of the coatings.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3