Abstract
Keeping a coating–substrate system undamaged during heavy-load elastohydrodynamic lubrication (EHL) conditions is challenging. To overcome this problem, an EHL model with a coated gear pair was built. Firstly, based on the full-system finite element method, the effect of the coating elastic modulus on the oil film pressure was obtained. Secondly, the failure mode was predicted after the stress analysis. Finally, the surface/interface damage evolution behavior of the coating–substrate system was analyzed visually by embedding cohesive zone elements. In the numerical calculation, stiffer coatings tended to increase the film pressure and secondary pressure spike, compared with more compliant coatings. As the coating stiffness decreased, the maximum equivalent stress in the system reduced, and its location tended to develop close to or at the substrate. The coating cracking and interfacial delamination were individually caused by the shear stress in the coating and shear stress on the interface, and both of them initiated in the region of the secondary pressure peak. The interfacial delamination increased the crack failure probability of coating and vice versa. Therefore, through analyzing the EHL model, the exact damage growth location and its evolution in the coated solids can be determined, and the failure mechanism can be comprehensively revealed.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献