Abstract
In this study, various composites of bioglass/gelatin/polycaprolactone (BG/GE/PCL) were produced and coated on the surface of 316L stainless steel (SS) to improve its bioactivity. X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were utilized to characterize the specimens. The results showed that bioglass particles were distributed uniformly in the coating. By increasing the wt.% of bioglass in the nanocomposite coatings, the surface roughness and adhesion strength increased. The corrosion behavior of GE/PCL (PCL-10 wt.% gelatin coated on 316L SS) and 3BG/GE/PCL (GE/PCL including 3 wt.% bioglass coated on 316L SS) samples were studied in PBS solution. The results demonstrated that 3BG/GE/PCL sample improved the corrosion resistance drastically compared to the GE/PCL specimen. In vitro bioactivity of samples was examined after soaking the specimens for 7, 14 and 28 days in simulated body fluid (SBF). The results showed a significant apatite formation on the surface of 3BG/GE/PCL samples. The cell viability evaluation was performed using 3- (4, 5-dimethylthiazol-2-yl)-2,5 diphenyltetrazoliumbromide (MTT) tests which confirmed the enhanced cell viability on the surface of 3BG/GE/PCL samples. The in vivo behavior of specimens illustrated no toxicity and inflammatory response and was in a good agreement with the results obtained from the in vitro test.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献