Preparation of UV Curable Optical Adhesive NOA81 Bionic Lotus Leaf Structure Films by Nanoimprint Technique and the Applications on Silicon Solar Cells

Author:

Zhang Xuehua1ORCID,Zhang Pei1,Zhang Wei1,Chen Jing2,Hu Fangren1

Affiliation:

1. College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China

Abstract

Front surface texturing is a common method used to improve the optical performance of photovoltaic devices. However, traditional texturing techniques may be challenging in some cases, such as when dealing with ultra-thin substrates. Textured polymer films on such devices would be an alternative approach. This paper reports a study of NOA81 thin films with a bionic lotus leaf surface structure on monocrystalline silicon solar cells. Inspired by the surface structure of natural lotus leaves, we successfully prepared a bionic lotus leaf microstructure film on the surface of solar cells based on NOA81 using polydimethylsiloxane (PDMS) polymer and nanoimprinting methods. Scanning electron microscopy (SEM) images showed that the surface structure of the NOA81 thin film was the same as that of natural lotus leaves. A UV-Vis spectrophotometer with an integrating sphere was used to measure the reflectance of the textured NOA81 film on the silicon wafer. Results showed that the textured NOA81 film could effectively reduce the reflectance of the silicon wafer surface. We also used finite-difference time-domain (FDTD) simulation to verify this conclusion further. Finally, the I-V characteristics of the prepared solar cells with the textured NOA81 film were investigated, and the highest photovoltaic efficiency was measured to be about 16.07%, effectively improving the photoelectric conversion efficiency. In addition, the film with textured NOA81 can be used as a protective film for monocrystalline silicon solar cells.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3