Symbiosis of Sulfate-Reducing Bacteria and Total General Bacteria Affects Microbiologically Influenced Corrosion of Carbon Steel

Author:

Jin Juxing1,Li Yingchao1,Huang Huaiwei2,Xiang Yong2,Yan Wei3ORCID

Affiliation:

1. Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, College of New Energy and Materials, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing 102249, China

2. College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing 102249, China

3. Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing 102249, China

Abstract

The effects of the symbiosis of sulfate-reducing bacteria (SRB) and total general bacteria (TGB) on the microbiologically influenced corrosion (MIC) of carbon steel were investigated in this research. The SRB was the main corrosive bacterium, and TGB induced slightly general MIC. The symbiosis of SRB and TGB induced more severe MIC and pitting corrosion than SRB. The main corrosion products were FeS, Fe2O3, and FeOOH. The presence of TGB facilitates MIC and pitting corrosion by providing a locally anaerobic shelter for SRB. An MIC mechanism of the symbiosis of SRB and TGB was proposed.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

National Key R&D Program of China

Foundation of China University of Petroleum, Beijing

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3