Studies on the Structure, Optical, and Electrical Properties of Doped Manganese (III) Phthalocyanine Chloride Films for Optoelectronic Device Applications

Author:

Sánchez Vergara María Elena,Canseco Juárez María José,Ballinas Indili Ricardo,Carmona Reyes Genaro,Álvarez Bada José Ramón,Álvarez Toledano CecilioORCID

Abstract

In the last few years, significant advances have been achieved in the development of organic semiconductors for use in optoelectronic devices. This work reports the doping and deposition of semiconducting organic thin films based on manganese (III) phthalocyanine chloride (MnPcCl). In order to enhance the semiconducting properties of the MnPcCl films, different types of pyridine-based chalcones were used as dopants, and their influence on the optical and electric properties of the films was analyzed. The morphology and structure of the films were studied using IR spectroscopy and scanning electron microscopy (SEM). Optical properties of MnPcCl–chalcone films were investigated via UV–Vis spectroscopy, and the absorption spectra showed the Q band located between 630 and 800 nm, as well as a band related to charge transfer (CT) in the region between 465 and 570 nm and the B band in the region between 280 and 460 nm. Additionally, the absorption coefficient measurements indicated that the films had an indirect transition with two energy gaps: the optical bandgap of around 1.40 eV and the fundamental gap of around 2.35 eV. The electrical behavior is strongly affected by the type of chalcone employed; for this reason, electrical conductivity at room temperature may vary from 1.55 × 10−5 to 3.02 × 101 S·cm−1 at different voltages (0.1, 0.5, and 1.0 V). Additionally, the effect of temperature on conductivity was also measured; electrical conductivity increases by two orders of magnitude with increasing temperature from 25 to 100 °C. The doping effect of chalcone favors electronic transport, most likely due to its substituents and structure with delocalized π-electrons, the formation of conduction channels caused by anisotropy, and the bulk heterojunction induced by the dopant. In terms of optical and electrical properties, the results suggest that the best properties are obtained with chalcones that have the methoxy group as a substituent. However, all MnPcCl–chalcone films are candidates for use in optoelectronic devices.

Funder

Universidad Anáhuac México

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3