Fabrication of Dense Gadolinia-Doped Ceria Coatings via Very-Low-Pressure Plasma Spray and Plasma Spray–Physical Vapor Deposition Process

Author:

Wen Jing,Song Chen,Liu Taikai,Deng Ziqian,Niu Shaopeng,Zhang Yapeng,Liu Libin,Liu Min

Abstract

Gadolinia-doped ceria (GDC) is a promising electrolyte material for low-temperature solid oxide fuel cells (LT-SOFCs). Many works used ceramic sintering methods to prepare the GDC electrolyte, which was mature and reliable but presented difficulties in rapidly preparing a large area of GDC electrolyte without cracks. The low-pressure plasma spray (LPPS) process has the potential to solve this problem, but few studies have been conducted to date. In this work, submicron GDC powder was agglomerated by a spray drying method to achieve the proper granularity with D50 about 10 μm, and then two dense GDC coatings were fabricated with this agglomerated GDC powder using very-low-pressure plasma spray (VLPPS) and plasma spray–physical vapor deposition (PS-PVD), respectively. The results indicate that the two GDC coatings exhibited similar microstructure but with different densification mechanisms. The VLPPS coating was mainly built up in the form of liquid splats, which had lower mechanical properties due to the lower density and crystallinity, while the PS-PVD coating was co-deposited with the vapor clusters and liquid splats, which had higher density, crystallinity, and mechanical properties. It can therefore be concluded that the GDC coating prepared by PS-PVD is more appropriate for the LT-SOFC application.

Funder

National Key Research and Development Program of China

Science and Technology Planning Project of Guangdong Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3