The Effect of Crystallization and Phase Transformation on the Mechanical and Electrochemical Corrosion Properties of Ni-P Coatings

Author:

Buchtík MartinORCID,Doskočil LeošORCID,Brescher RomanORCID,Doležal PavelORCID,Másilko JiříORCID,Wasserbauer JaromírORCID

Abstract

This paper deals with the study of the crystallization and phase transformation of Ni-P coatings deposited on AZ91 magnesium alloy. Prepared samples were characterized in terms of surface morphology and elemental composition by means of scanning electron microscopy with energy-dispersive spectroscopy analysis. The results of X-ray diffraction analysis and differential scanning calorimetry suggested that increasing the phosphorus content caused Ni-P coatings to develop an amorphous character. The crystallization of Ni was observed at 150, 250, and 300 °C for low-, medium- and high-phosphorus coatings, respectively. The Ni crystallite size increased with increasing temperature and decreasing P content. Conversely, the presence of the Ni3P phase was observed at a maximum peak of 320 °C for the high-phosphorus coating, whereas the crystallization of the Ni3P phase shifted to higher temperatures with decreasing P content. The Ni3P crystallite size increased with increasing temperature and increasing P content. An increase in microhardness due to the arrangement of Ni atoms and Ni3P precipitation was observed. The deposition of as-deposited Ni-P coatings led to an improvement in the corrosion resistance of AZ91. However, the heat treatment of coatings resulted in a deterioration in corrosion properties due to the formation of microcracks.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference44 articles.

1. Magnesium Technology Metallurgy, Design Data, Automotive Applications;Friedrich,2004

2. Magnesium Alloys—Design, Processing and Properties;Czerwinski,2011

3. Discontinuous and continuous precipitation in magnesium–aluminium type alloys

4. Corrosion of Magnesium Alloys;Song,2011

5. The study of electroless nickel plating directly on magnesium alloy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3