Oxidation and Wear Mechanisms of FeCoCrNiMnAlx Cladding Layers at High-Temperature Condition

Author:

Cui YanORCID,Shen JunqiORCID,Hu Shengsun,Geng Keping

Abstract

FeCoCrNiMnAlx high-entropy alloy (HEA) cladding layers were successfully fabricated on H13 steel by laser cladding. The microstructure and properties of the FeCoCrNiMnAlx HEA cladding layers were systematically studied. The influence of Al content on high-temperature wear resistance of HEAs was investigated by depth-of-field microscopy, XRD, SEM and EDS. Addition of Al element affected the mechanism of oxidation and strengthening of the cladding layers, and effectively promoted its anti-oxidant and abrasion resistance. Compared with the FeCoCrNiMn cladding layer, the FeCoCrNiMnAl0.75 cladding layer enhanced the anti-plastic deformation capacity by 7.1% and reduced oxidation weight gain and total wear weight loss at high temperature by 36.79% and 79.0%, respectively. The wear mechanisms of the cladding layer at high temperature were mainly oxidation wear and abrasive wear, while adhesive wear took a backseat.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference31 articles.

1. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements;Yeh;Mater. Chem. Phys.,2007

2. Strengthening mechanisms in multi-phase FeCoCrNiAl1.0 high-entropy alloy cladding layer;Cai;Mater. Charact.,2020

3. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys;Tsai;Acta Mater.,2013

4. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys;Kao;J. Alloys Compd.,2009

5. Microstructures and properties of high-entropy alloys;Zhang;Prog. Mater. Sci.,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3