Atmospheric Pressure Plasma Polymerization of Carvone: A Promising Approach for Antimicrobial Coatings

Author:

Masood Asad1,Ahmed Naeem1ORCID,Shahid Fatima2ORCID,Mohd Razip Wee M. F.1ORCID,Patra Anuttam3,Siow Kim S.1ORCID

Affiliation:

1. Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

2. Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

3. Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden

Abstract

Medical devices are often vulnerable to colonization by nosocomial pathogens (bacteria), leading to infections. Traditional sterilization methods may not always be effective, and as a result, alternative options are being explored to prevent microbial contamination. Recently, scientists are emphasizing using plant-derived essential oils that possess inherent antibacterial properties to produce antimicrobial coatings using plasma polymerization technology carried out at atmospheric pressure (AP). This approach shows promise compared to other coating strategies that need several processing steps, including a high-vacuum system, and are laborious, such as the immobilization of antimicrobial materials on precoated layers in the low-pressure plasma polymerization approach. The present study demonstrates the potential of AP plasma polymerization for producing thin films with excellent antibacterial properties and surface characteristics. The resulting coatings are stable, smooth, and have high wettability, making them ideal for repelling bacteria. The calculated zeta potential and deposition rate for the films are also favorable. These AP plasma-polymerized thin films created from carvone show a reduction rate of more than 90% for Escherichia coli and Staphylococcus aureus bacteria. Our computational docking studies also reveal strong binding interactions between the original carvone monomer and both bacteria. The study suggests that these AP plasma-produced coatings have great potential as antibacterial coatings for biomedical devices.

Funder

Universiti Kebangsaan Malaysia

Centre for Research and Instrumentation Management (CRIM) Centralized Lab, UKM

PRECISE LTU

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3