Abstract
Painting antifouling coatings is one of the most important methods to prevent marine biofouling. Acrylic resin is widely used in marine antifouling because of its excellent stickiness, water resistance, and film-forming capabilities. At present, the widely used acrylate antifouling coatings require a high concentration of cuprous oxide as antifoulant. The release and accumulation of copper ions are the main factors affecting the marine environment. In this study, BIT–allyl methacrylate (BM) and zinc acrylate (ZM) were selected as functional monomers copolymerized with methyl methacrylate (MMA) and butyl acrylate (BA) to prepare a series of BIT acrylate antifouling resins. The inhibitory effects of all resins against marine bacteria (S. aureus, V. coralliilyticus, and V. parahaemolyticus), marine algae (Chlorella, I. galbana, and C. curvisetus), and barnacle larvae were studied. Moreover, marine field tests on the BIT modified resin in coastal waters were conducted. The results demonstrate that the grafted BIT–zinc acrylate resin not only exhibits excellent antifouling properties but also a significant self-polishing performance, providing a novel strategy to design a long-term antifouling resin with stable antifoulant release.
Funder
National Natural Science Foundation of China
Hainan Provincial Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献