Features of the Oxidation of Multilayer (TiAlCrSiY)N/(TiAlCr)N Nanolaminated PVD Coating during Temperature Annealing

Author:

Kovalev Anatoly Ivanovich1ORCID,Vakhrushev Vladimir Olegovich12,Konovalov Egor Pavlovich1,Fox-Rabinovich German Simonovich3,Wainstein Dmitry Lvovich1ORCID,Dmitrievskii Stanislav Alekseevich1,Mukhsinova Alise Denisovna4

Affiliation:

1. State Scientific Centre, I.P. Bardin Central Research Institute for Ferrous Metallurgy, 23/9 Bdg. 2, Radio Str., 105005 Moscow, Russia

2. MIREA-Rusian Technological University, 78 Vernadsky Avenue, 113454 Moscow, Russia

3. Department of Mechanical Engineering (JHE-316), McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada

4. Department of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia

Abstract

A nano-multilayer Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N PVD coating was deposited on Kennametal carbide K 313 inserts. These coatings are widely used to protect cutting tools under severe exploitation conditions. Under equilibrium conditions, it was found that the Al2O3 oxide possessed better adhesive properties than the TiO2. The addition of chromium further enhanced the oxidation resistance of the coatings. Silicon significantly increased the oxidation resistance of this type of coating. The properties of the diffusion process in this coating have not been sufficiently investigated, despite the considerable number of articles published on this topic. For the purpose of this study, a multilayer ion-plasma (TiAlCrSiY)N/(TiAlCr)N coating was oxidized under equilibrium conditions; its chemical inhomogeneity was studied by time-of-flight mass spectroscopy using a TOF SIMS5-100 instrument. The data was collected from an area of 100 × 100 µ. A D-300 profilometer (KLA-Tencor Corp., Milpitas, California 95035, USA) was used to determine the rate of ion etching. It was found that oxidation commenced at the surface nanolayer of a TiAlCrN nitride, forming loose films of Cr2O3, TiO2, and Al2O3 oxides. This passivating film had a thickness of around 140 nm. For the first time, the interlayer diffusion coefficients of Si and Y were determined in multilayer coatings based on Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N, under open air annealing at 700 °C. The physical nature of the differences in the diffusion of these elements is discussed. The diffusion rate in the near-surface volumes was lower than in the deep layers of the multilayer coating, most likely due to the formation of passivating oxide films on the surface.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3