A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance

Author:

Jeong ChanyoungORCID

Abstract

Stainless steel fabricated using chromium is widely being used in various industries due to its superior corrosion resistance compared to light metals such as aluminum, titanium, and magnesium. However, despite its excellent properties, a problem of poor corrosion resistance in harsh environments remains. In this study, an economical and environmentally friendly anodizing process was applied to the surface of stainless steel (SUS 316L) to create porous nanostructures to improve its water-repellent properties. In these experiments, voltages of 30, 50, 70, and 90 V were applied to stainless steel for 3 h to form an oxide film, prior to immersion in 0.1 M phosphoric acid for 10 min to expand the oxide pores. In addition, the change of the oxide structure was observed through field-emission scanning electron microscopy (FE-SEM). In terms of the contact angle, hydrophilicity was observed at applied voltages of 70 and 90 V, in which a porous film was formed; the best water repellency was observed at a 90 V applied voltage, after the application of an FDTS (1H,1H,2H,2H-perfluorodecyltrichlorosilane) coating, a self-assembled monolayer. Finally, the corrosion behavior of a hydrophobic specimen was tested using potentiodynamic polarization (PDP) experiments. The hydrophobic SUS 316L alloy subsequently displayed improved corrosion resistance in a 3.5 wt% NaCl solution.

Funder

the Ministry of Science and ICT

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3