Numerical Analysis of an Inline Metal-Organic Chemical Vapour Deposition Process Based on Sliding-Mesh Modelling

Author:

Zhou Xiaosong,Wu Yiyi,Yang Xiaogang,Huang Chaowen

Abstract

The flow behaviour under the influence of susceptor moving speed is a key factor for the fabrication of high-quality cadmium telluride (CdTe) thin films during the inline metal-organic chemical vapour deposition (MOCVD) process. The main purpose of this paper is to find a method to study the real-time dynamics of transport phenomena inside the reactor. The sliding mesh method is thus proposed and its feasibility is evaluated using computational fluid dynamics (CFD) modelling. A computational grid with 173,400 hexahedral cells is adopted through a grid sensitivity test validation. The simulations show that comparing to 2D modelling, the results of 3D modelling are found to be in good agreement with the experimental data for the temperature range of 628–728 K. Based on the velocity field, the temperature field and distribution of species concentration under different sampling time intervals of 60, 180 and 300 s, the thin film uniformity on both edges of the substrate is found to be influenced by the side effect of the baffle plate. The mass deposited on the substrate is further investigated under different susceptor moving speeds from 0.75 to 2.25 cm/min, and a moving speed between 0.75 to 1.13 cm/min is found to be effectively beneficial to the deposition process.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3