Corrosion and Wear Properties of Cr Coating and ZrO2/Cr Bilayer Coating on Zr-4 Alloy

Author:

Pan Xiaolong,Qiu Longshi,Hu XiaogangORCID,Jiang Haixia

Abstract

In this study, duplex surface treatments were used to prepare a ZrO2/Cr bilayer coating on zirconium alloy cladding for enhancing the wear and corrosion behaviors. The surface and cross-section morphology of coated Zr-4 alloy was characterized; the results show that the Cr- and ZrO2/Cr-coated samples had similar morphology, and more obvious surface undulates could be observed on the ZrO2/Cr coating than the pure Cr coating owing to the rough surface of the plasma electrolytic oxidation coating. Wear and electrochemical behavior in 1200 mg/L H3BO3 and 2.2 mg/L LiOH solutions of original and coated Zr-4 alloy were investigated. The electrochemical corrosion test indicated the coated Zr-4 alloy exhibited better corrosion resistance behavior than the original Zr-4 alloy. The potentiodynamic polarization curves and corrosion morphology suggest the pitting corrosion occurred on the surface of the original and coated Zr-4 alloy. The ZrO2/Cr-coated Zr-4 alloy had better corrosion resistance due to the dual protection of the PEO layer and Cr coating. The wear behavior of the original and coated Zr-4 alloy was also investigated under a constant load of 5 N. The results reveal that the coated Zr-4 alloy had better wear resistance, and the PEO layer was found to significantly enhance the wear resistance of the Zr-4 alloy.

Funder

Key Research and Development Program of Shaanxi

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference33 articles.

1. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization;Animasaun,2022

2. Enhancement of high temperature steam oxidation resistance of Zr–1Nb alloy with ZrO2/Cr bilayer coating

3. Cr-coated cladding development at Framatome;Bischoff;Top Fuel,2018

4. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings

5. Cladding burst behavior of Fe-based alloys under LOCA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3