Numerical Simulation of Preheating Temperature on Molten Pool Dynamics in Laser Deep-Penetration Welding

Author:

Peng JinORCID,Liu Jigao,Yang Xiaohong,Ge Jianya,Han Peng,Wang Xingxing,Li ShuaiORCID,Wang Yongbiao

Abstract

In this paper, a heat-flow coupling model of laser welding at preheating temperature was established by the FLUENT 19.0 software. The fluctuation of the keyhole wall and melt flow behavior in the molten pool under different preheating temperatures were analyzed, and the correlation between keyhole wall fluctuation and molten pool flow with spatters and bubbles was obtained. The results indicate that when the outer wall in the middle of the rear keyhole wall is convex, the inner wall is concave, which causes spatter or the bottom of the keyhole to collapse. When the metal layer in the middle of the rear keyhole wall turns into obliquely upward flow, welding spatter is generated. In contrast, the metal layer in the middle of the rear keyhole wall changes to flow into the keyhole, and the bottom of the keyhole collapses. When the preheating temperature is 300 K (ambient temperature), 400 K, and 500 K, the inner wall in the middle of the rear keyhole wall is concave. With the increase in the preheating temperature, the area of the concave gradually increases, and the size of the liquid column behind the keyhole opening gradually decreases. When the preheating temperature is 300 K, there are more spatters above the molten pool. In comparison, when the preheating temperature is 400 K or 500 K, there are less spatters, and the bottom of the keyhole collapses.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3