Abstract
Residual stress in coatings often affects the service performance of coatings, and the residual stresses in some local areas even lead to premature failure of coatings. In this work, we characterized the residual stress of local micro-areas of a nanocrystalline Cr2O3 coating deposited on a Si wafer through micro-Raman spectroscopy, including the depositional edge zone where the electrode was placed, the micro-area containing Cr2O3 macroparticles, and other micro-areas vulnerable to cracks. To accurately measure the thickness of the coating, we combined optical interferometry and direct measurement by a profilometer. The results indicate the existence of in-plane tensile residual stress on the Cr2O3 coating. In thick coatings, the residual stress is independent of the coating thickness and is stable between 0.55 GPa and 0.75 GPa. As the coating thickness is less than 0.8 μm, the residual stress is directly related to the coating thickness. This in-plane tensile stress is considered as the origin of the observed microcrack, which can partially release the stress.
Funder
National Natural Science Foundation of China
Science and Technology Special Commissioner Program of Tianjin
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献