A3B Zn(II)-Porphyrin-Coated Carbon Electrodes Obtained Using Different Procedures and Tested for Water Electrolysis

Author:

Taranu Bogdan-Ovidiu1ORCID,Rus Florina Stefania1ORCID,Fagadar-Cosma Eugenia2ORCID

Affiliation:

1. National Institute of Research and Development for Electrochemistry and Condensed Matter, Dr. A. Paunescu Podeanu Street No. 144, 300569 Timisoara, Romania

2. Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania

Abstract

In the context of water electrolysis being highlighted as a promising technology for the large-scale sustainable production of hydrogen, the water-splitting electrocatalytic properties of an asymmetrically functionalized A3B zinc metalated porphyrin, namely, Zn(II) 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin, were evaluated in a wide pH range. Two different electrode manufacturing procedures were employed to outline the porphyrin’s applicative potential for the O2 and H2 evolution reactions (OER and HER). The electrode, manufactured by coating the catalyst on a graphite support from a dimethylsulfoxide solution, displayed electrocatalytic activity for the OER in an acidic electrolyte. An overpotential value of 0.44 V (at i = 10 mA/cm2) and a Tafel slope of 0.135 V/dec were obtained. The modified electrode that resulted from applying a Zn(II)-porphyrin-containing catalyst ink onto the same substrate type was identified as a bifunctional water-splitting catalyst in a neutral medium. OER and HER overpotentials of 0.78 and 1.02 V and Tafel slopes of 0.39 and 0.249 V/dec were determined. This is the first Zn(II)-porphyrin to be reported as a heterogenous bifunctional water-splitting electrocatalyst in neutral aqueous electrolyte solution and is one of very few porphyrins behaving as such. The TEM analysis of the porphyrin’s self-assembly behavior revealed a wide variety of architectures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3