Experimental Research on Collapsibility of Xi’an Loess Improved by Calcium Lignosulfonate

Author:

Bai ZhentaoORCID,Li Dongbo,Zhao Dong,Lu Wei,Liu Jiaping

Abstract

To improve the problem of collapsibility of loess, adding industrial materials such as cement is common engineering treatment, but this seriously damages the reclamation performance of soil. Calcium lignosulfonate (CLS) from paper plant waste fluids is a natural bio-based polymer with good application prospects as a soil improver. In this paper, the collapsibility and mechanical properties of CLS improved loess were investigated using a collapsibility test, gray correlation analysis, and an unconfined compressive strength test (UCS). In addition, the strengthening mechanism of CLS-improved loess was also explored based on scanning electron microscopy (SEM), microstructure parameters, and X-ray diffraction. The collapsibility coefficient decreased rapidly after CLS was admixed, and the single and double-oedometer methods showed the same change trend. The order of grey correlation degree of collapsibility on each index from large to small was: moisture content, pore ratio, dry density, and CLS content. The dosage of CLS greatly influenced the mechanical properties and collapsibility of stabilized loess. The optimum amount of CLS for Xi’an loess was 3%, at which the collapsibility coefficient was reduced by more than 95%, and the 28 d UCS increased by 180.01%. From the microstructure and mineral composition analysis perspective, CLS plays a role in filling pores and linking soil particles. After the protonation and ion exchange effect of CLS, the grain size and double electric layer thickness of mineral composition were reduced, and the structural compactness was increased. These research results are of great scientific significance for the ecological modification of soils.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China Youth Science Fund

China Postdoctoral Fund Regional Special Support Program

Independent Research and Development project of State Key Laboratory of Green Building in Western China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3