Production and Characterization of Al-Si Coatings Fabricated by Mechanical Alloying Method on Inconel 625 Superalloy Substrates

Author:

Köktaş Serhan,Önay Ali Bülent,Kılınç Ahmet Çağrı

Abstract

Inconel superalloys are used substantially in high-temperature environments. However, these alloys suffer from corrosion and wear. Attempts to overcome these drawbacks involve coating the metal with different techniques and materials. In this study, a new method with increasing potential was utilized. Using the mechanical alloying process in a planetary ball mill vial, alloying and the Al-Si coatings were concurrently achieved on Inconel 625 substrates. Different process control agent (PCA) ratios, milling ball diameters, and milling times were used to improve coating properties. Macro and microstructure, morphology, microhardness, and roughness values of samples were evaluated and compared. Additionally, crystallographic and cross-sectional properties were investigated in order to optimize the processing conditions. The results indicated that increasing the diameter of the grinding ball enhanced the hardness and thickness of these coatings and increased the roughness values. Longer processing time also enhanced the thickness with mechanical values. However, under these conditions, coating homogeneity decreased, and incompatible regions were formed on the coatings. PCA content brought a refined grain structure, hence showed better mechanical properties. On the other hand, processing time should be increased to get a denser and thicker protective layer against the operational conditions.

Funder

Dokuz Eylül Üniversitesi

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference43 articles.

1. Coatings for superalloys;Galetz,2015

2. High temperature coatings for gas turbine blades: A review

3. Protective Coatings for Superalloys and the Use of Phase Diagrams;Jackson,1978

4. On the kinetics of the pack—aluminization Process

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3