Abstract
This article deals with the comparative wear of CNMG-coated sintered carbide indexable cutting inserts by several manufacturers when turning 1.6582 steel hardened to 40–44 HRC. The main goal will be to demonstrate the different course of wear by testing seemingly identical inserts for engineering companies, showing the connection between the course of wear and the production of waste in the form of chips. The monitored type of wear was the flank wear VBmax of a cutting tool depending on the length of the machining time. Additionally, the effect of cutting tool wear on chip production, i.e., their quantity, shape and size, was monitored. For the purpose of mutual comparison, uniform cutting conditions were chosen on the basis of previous experiments, ensuring the stability of the given cutting process. For flank wear analysis, optical and electron microscopes were used. Meanwhile, a portable roughness tester was used to analyze the roughness of the machined surface. It was found that the quality of the interconnected coating layers has a perceptible influence on wear rate of the evaluated cutting inserts. The relation between the degree and characteristics of wear on the one hand, and the properties of the produced chips that identify the effect of the difference in the deposition layers using EDX/SEM analysis on the other, foreshadows the importance of choose between products with similarly declared properties was found. The current assessment of cutting tool wear and the evaluation of the chip produced has significant economic potential for manufacturing companies seeking to minimize costs.
Funder
OP VVV Project Development of new nano and micro coatings on the surface of selected metallic materials—NANOTECH ITI II.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献