Abstract
This article addresses mixed convective 3D nanoliquid flow by a rotating disk with activation energy and magnetic field. Flow was created by a rotating disk. Velocity, concentration and temperature slips at the surface of a rotating disk were considered. Impacts of Brownian diffusion and thermophoretic were additionally accounted for. The non-linear frameworks are simplified by suitable variables. The shooting method is utilized to develop the numerical solution of resulting problem. Plots were prepared just to explore that how concentration and temperature are impacted by different pertinent flow parameters. Sherwood and Nusselt numbers were additionally plotted and explored. Furthermore, the concentration and temperature were enhanced for larger values of Hartman number. However, the heat transfer rate (Nusselt number) diminishes when the thermophoresis parameter enlarges.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献