Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd(III)

Author:

Serbanescu Oana Steluta,Pandele Andreea Madalina,Miculescu FlorinORCID,Voicu Stefan IoanORCID

Abstract

This study presents a new, revolutionary, and easy method for evaluating the separation process through a membrane that is based on changing the color of the membrane surface during the separation process. For this purpose, a cellulose acetate membrane surface was modified in several steps: initially with amino propyl triethoxysilane, followed by glutaraldehyde reaction and calmagite immobilization. Calmagite was chosen for its dual role as a molecule that will complex and retain Gd(III) and also as an indicator for Gd(III). At the contact with the membrane surface, calmagite will actively complex and retain Gd(III), and it will change the color of the membrane surface during the complexation process, showing that the separation occurred. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TGA-DTA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, demonstrating the synthesis of membrane material with self-indicating properties. In addition, in the separation of the Gd(III) process, in which a solution of gadolinium nitrate was used as a source and as a moderator in nuclear reactors, the membrane changed its color from blue to pink. The membrane performances were tested by Induced Coupled Plasma–Mass Spectrometry (ICP-MS) analyses showing a separation process efficiency of 86% relative to the initial feed solution.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3