Effects of Input Power Ratio of AlCr/Ti Target on the Microstructural and Mechanical Properties of AlTiCrN Coatings Synthesized by a High-Power Impulse Magnetron Sputtering Process

Author:

Tang Jian-FuORCID,Lin Ching-Yen,Yang Fu-Chi,Chang Chi-LungORCID

Abstract

In this study, five AlTiCrN nitride coatings were deposited via high-power impulse magnetron sputtering (HiPIMS). The AlTiCrN coatings were synthesized with high contents of Al or Ti and a lower fraction of Cr, using Ti and Al70Cr30 targets with five different input power ratios. Electron probe microanalyzer results revealed that the increased rate of Ti contents in the coatings can be divided into two regions due to the difference of power densities for HiPIMS (>0.5 kW/cm2) and modulated pulsed power (MPP) (<0.5 kW/cm2). The deposition rate and thickness of the coatings depended on the sputtering yield of two metal targets under HiPIMS and MPP modes. The grain size of the coatings decreased from 60 to 40 nm as the input power ratios of the AlCr/Ti targets decreased due to their lower thickness values and lower Al content. Selected area electron diffraction patterns and X-ray diffraction results revealed that the TiN and AlTiN phases can be found in the coating containing higher Ti content, whereas the AlN, CrN, and AlCrN phases were observed in the coating with a higher Al concentration. Nevertheless, decreasing the concentration of Ti had a detrimental effect on the mechanical properties of AlTiCrN coatings, due to a promotion in grain size and the formation of AlN, which is softer than TiN. It is noticed that our results differed from those in previous reports, in which a grain refinement effect was observed due to increasing Al content. In this work, the effect of processing the parameters of the HiPIMS and MPP power systems on the grain size and the mechanical property of the coating was also discussed.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3