Model and Algorithm for a Rotor-Bearing System Considering Journal Misalignment

Author:

Zhao Zhiming1ORCID,Ma Junjie1,Liu Qi1,Yang Peiji1

Affiliation:

1. College of Mechanical and Electrical Engineering, Xi’an Campus, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

Disturbances caused as a result of the misalignment and axial motion of the journal affect the characteristics of the rotor-bearing system. This paper aims to propose an algorithm for the theoretical analysis of a rotor-bearing system that considers these disturbances. A theoretical model for a journal bearing considering disturbances is given. The dynamic equations for a rigid rotor-bearing system are introduced. A detailed algorithm that can simultaneously solve the rotor-dynamic equations and the Reynolds equation is proposed. The static performance, such as the bearing attitude angle and the fluid film pressure, are given, and dynamic characteristics such as the nonlinear dynamic responses and the axial orbits of a rigid rotor-bearing system are presented. The hydrodynamic effect of the bearing is enhanced by the axial disturbance. Disturbances in the circumferential and radial directions lead to variations in the fluid film thickness distribution in the axial direction and the offset of the fluid film pressure distribution in the axial direction. When these disturbances work together, the variation trend is more obvious and affects the capacity and dynamic characteristics of the bearing. When the L/D value of the bearing increases, the clearance between the journal and the bearing decreases rapidly. When the value reaches a certain limit, contact and collision might occur. The theoretical analysis method and the algorithm proposed for a rotor-bearing system considering several disturbances could enhance the design level for a bearing and rotor-bearing system.

Funder

Scientific Research Program Funded by the Education Department of Shaanxi Provincial Government

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3