Analysis of the Interfacial Interaction between Wood Tar-Rejuvenated Asphalt and Aggregate Based on Molecular Dynamics Simulation

Author:

Xu Le1,Gong Guoqing2,Zeng Deliang1,Li Yongwei3,Chen Xing4,Liu Kefei1,Li Quan15

Affiliation:

1. School of Civil Engineering, Central South University of Forestry & Technology, Changsha 410004, China

2. Planning and Project Office, Department of Transportation of Hunan Province, Changsha 410004, China

3. School of Civil Engineering, Central South University, Changsha 410083, China

4. Hunan Expressway Engineering Consulting Co., Ltd., Changsha 410329, China

5. Hunan Province Construction Solid Waste Resource Utilization Engineering Technology Research Center, Changsha 410083, China

Abstract

This study utilized molecular dynamics simulation to investigate the adhesion process between wood tar-rejuvenated asphalt and acid/alkaline aggregate. Initially, various indicators including the contact area, cohesion coefficient, and interaction energy were employed to assess the adhesion effect under dry conditions. This revealed the action mechanism of the wood tar-rejuvenator in enhancing the adhesion performance between aged asphalt and aggregate. Subsequently, an asphalt–water–aggregate interface model was developed to simulate the water damage process of the asphalt mixture. This aimed to unveil the damage mechanism of water intrusion on the adhesion performance of the asphalt–aggregate interface and evaluate the water damage resistance of wood tar-rejuvenated asphalt through adhesion energy, stripping work, and the energy ratio. The findings indicate that wood tar-rejuvenated asphalt exhibits favorable adhesion properties with both acid and alkaline aggregates. The addition of wood tar-rejuvenated asphalt increased the interaction energy between aged asphalt and acid and alkali aggregates by 67.75 kJ/mol and 97.3 kJ/mol, respectively. The addition of a wood tar rejuvenator enhances the interaction energy between aged asphalt and aggregate, thereby increasing mutual attraction and enlarging the contact area. The adhesion between asphalt and aggregates hinges on the interaction between asphaltene and aggregates, and the wood tar rejuvenator reduces the diffusion ability of asphaltene in the attractive state of the aggregate, resulting in stable aggregation. Moisture intrusion increased the aggregation distance between asphaltene and aggregate by 14.1% and decreased the degree of aggregation by 24.0%, thereby reducing the interaction energy. The extent of damage caused by water intrusion is linked to the aggregation distance, with greater distances leading to deeper damage. Under wet conditions, the interaction energy of wood tar-rejuvenated asphalt increased by 78.2% in the acidic aggregate system and 98.1% in the basic aggregate system compared with aged asphalt. Meanwhile, wood tar-based rejuvenated asphalt improves the adhesion between aged asphalt and aggregate and reduces the stripping function of asphalt affected by water replacement, which results in the ER value of wood tar-rejuvenated asphalt being higher than that of the original asphalt by 0.12 and 0.22 in the acidic and alkaline environments, respectively, thus showing excellent resistance to water damage. This study provides new criteria for the selection of rejuvenators for waste asphalt, which will help in the future selection of superior rejuvenators for aged asphalt and reduce the possibility of choosing the wrong rejuvenator.

Funder

Key Research and Development Program of Hunan Province

Graduate Innovation Fund of the Central South University of Forestry and Technology, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3