Polypyrrole/α-Fe2O3 Hybrids for Enhanced Electrochemical Sensing Performance towards Uric Acid

Author:

Wang Renjie1ORCID,Liu Shanshan1,Song Xudong1,Jiang Kai1,Hou Yaohui1,Cheng Qiaohuan1,Miao Wei1,Tian Li1,Ren Ying1ORCID,Xu Sankui1

Affiliation:

1. College of Materials Science & Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

Uric acid, a metabolite formed by the oxidation of purines in the human body, plays a crucial role in disease development when its metabolism is altered. Various techniques have been employed for uric acid analysis, with electrochemical sensing emerging as a sensitive, selective, affordable, rapid, and simple approach. In this study, we developed a polymer-based sensor (PPy/α-Fe2O3) for the accurate determination of uric acid levels. The PPy/α-Fe2O3 hybrids were synthesized using an uncomplicated in situ growth technique. Characterization of the samples was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The electrochemical sensing performance towards uric acid was evaluated through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results demonstrated that the sensor exhibited excellent sensitivity towards uric acid detection within a wide range of 5–200 μM with a limit of detection (LOD) as low as 1.349 μM. Furthermore, this work elucidated the underlying sensing mechanism and highlighted the pivotal role played by PPy/α-Fe2O3 hybrids in enabling efficient uric acid sensing applications using electrochemical sensors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan University of Technology

Natural Science Project of the Science and Technology Department of Henan Province

Cultivation Programme for Young Backbone Teachers at the Henan University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3