Enhanced Adsorption of Methylene Blue Using Phosphoric Acid-Activated Hydrothermal Carbon Microspheres Synthesized from a Variety of Palm-Based Biowastes

Author:

Alhawtali Saeed1,El-Harbawi Mohanad1,Al-Awadi Abdulrhman S.2,El Blidi Lahssen1ORCID,Alrashed Maher M.1,Yin Chun-Yang3

Affiliation:

1. Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia

2. K.A. CARE Energy Research and Innovation Center in Riyadh, King Saud University, Riyadh 11421, Saudi Arabia

3. Newcastle University in Singapore, 537 Clementi Road #06-01, SIT Building @ Ngee Ann Polytechnic, Singapore 599493, Singapore

Abstract

In the present study, the ability for novel carbon microspheres (CMs) derived from date palm (Phoenix dactylifera) biomass using a hydrothermal carbonization (HTC) process and activated using phosphoric acid to remove methylene blue dye was investigated. Three types of palm-based wastes (seeds, leaflet, and inedible crystallized date palm molasses) were used and converted to CMs via the HTC process. The prepared samples were then activated using phosphoric acid via the incipient wetness impregnation method. The CMs samples before and after activation were analyzed using scanning electron microscopy (SEM), elemental analysis and scanning (CHNS), and the Fourier transform infrared (FTIR) and Brunauer–Emmet–Teller (BET) methods. The samples exhibited high BET surface areas after activation (1584 m2/g). The methylene blue adsorption results showed good fitting to the Langmuir, Fruendlich, and Temkin isotherm models for all activated samples. The maximum adsorption capacity achieved was 409.84 mg/g for activated CM obtained from the palm date molasses, indicating its high potential for application as a dye-based adsorption material.

Funder

Deputyship for Research and Innovation, “Ministry of Education”, in Saudi Arabia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3