Surface Modification of Polyester/Viscose Fabric with Silica Hydrosol and Amino-Functionalized Polydimethylsiloxane for the Preparation of a Fluorine-Free Superhydrophobic and Breathable Textile

Author:

Hasanzadeh MahdiORCID,Shahriyari Far Hossein,Haji AminoddinORCID,Rosace GiuseppeORCID

Abstract

This work attempted to fabricate superhydrophobic fabric via a simple immersion technique. Textile fabrics were coated with silica nanoparticles prepared from tetraethoxysilane (TEOS) to obtain sufficient roughness with hydrophobic surface chemistry. Then, the coated fabrics were treated with polydimethylsiloxane (PDMS) and aminopropyltriethoxysilane (APTES) to reduce the surface energy. The effects of the PDMS concentration on the surface morphology and superhydrophobicity of as-prepared fabric were investigated. The morphology and the composition of superhydrophobic fabric were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results revealed the formation of spherical silica nanoparticles with an average particle size of 250 nm throughout the fabric surface. The possible interactions between silica nanoparticles and APTES, as well as the fabrics, were elucidated. Investigating the hydrophobicity of fabrics via water contact angle (WCA) measurement showed that the treated fabric exhibits excellent water repellency with a water contact angle as high as 151° and a very low water sliding angle. It was also found that the treated fabric maintained most of its hydrophobicity against repeated washing, as the WCA of superhydrophobic fabrics decreased to 141° after 25 repeated washing cycles. The comfort properties of the obtained superhydrophobic fabrics in terms of air permeability and bending length did not reveal any significant changes.

Funder

Iran's National Elites Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3