Exploring the Potent Anticancer, Antimicrobial, and Anti-Inflammatory Effects of Capparis Spinosa Oil Nanoemulgel

Author:

Eid Ahmad M.1ORCID,Hawash Mohammed1ORCID,Abualhasan Murad1ORCID,Naser Sabreen1,Dwaikat Mjd1,Mansour Madleen1

Affiliation:

1. Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine

Abstract

Natural remedies derived from plants have a long history of usage in the treatment of a wide variety of severe diseases. This study aims to develop a Capparis spinosa (C. spinosa) oil nanoemulgel and evaluate its antimicrobial, anticancer, and anti-inflammatory effects. C. spinosa oil was developed into a nanoemulsion using a self-nanoemulsifying method with Span 80 and Tween 80 as emulsifying agents. Carbopol hydrogel was mixed with the nanoemulsion to form nanoemulgel. After this, we tested the particle size, polydispersity index (PDI), rheology, antimicrobial, cytotoxic, and anti-inflammatory activities. The nanoemulsion formulation that has a PDI of 0.159 and a particle size of 119.87 nm is considered to be the optimum formulation. The C. spinosa oil nanoemulgel gave results similar to its nanoemulsion, where it had a PDI lower than 0.2, droplet size below 200 nm, and zeta potential less than −35. Also, it had a pseudoplastic rheological behavior. The C. spinosa oil nanoemulgel showed a significant effect on Methicillin-Resistant Staphylococcus Aureus (MRSA) and Klebsiella pneumoniae (K. pneumonia) (ATCC 13883) with zone inhibition diameters of 33 ± 1.9 mm and 30 ± 1.4 mm, respectively, as well as significant activities on the MCF-7, HepG2, and HeLa cancer cell lines with IC50 values of 194.98, 91.2, and 251.18 µg/mL, respectively, which were better than those of the original oil. Regarding its anti-inflammatory effect, C. spinosa oil had a positive impact on both COX-1 and COX-2 but was more selective for COX-1. Consequently, simple nanotechnology techniques provide a promising step forward in the development of pharmacological dosage forms.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3