Degradation Behavior, Transport Mechanism and Osteogenic Activity of Mg–Zn–RE Alloy Membranes in Critical-Sized Rat Calvarial Defects

Author:

Zhao Mingyu,Liu Guanqi,Li Ying,Yu Xiaodong,Yuan Shenpo,Nie ZhihuaORCID,Wang Jiewen,Han Jianmin,Tan Chengwen,Guo Chuanbin

Abstract

In this study, a specific Mg–Zn–RE alloy membrane with 6 wt.% zinc and 2.7 wt.% rare earth elements (Y, Gd, La and Ce) was prepared to investigate implant degradation, transport mechanism and guide bone regeneration in vivo. The Mg-membrane microstructure and precipitates were characterized by the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM). The Mg-membrane degradation process and effect on osteogenesis were investigated in a critical-sized rat calvarial defect model via micro-CT examination and hard tissue slicing after 2-, 5- and 8-week implants. Then, the distribution of elements in organs after 1-, 2- and 4-weeks implantation was examined to explore their transportation routes. Results showed that two types of precipitates had formed in the Mg–membrane after a 10-h heat treatment at 175 °C: γ-phase MgZn precipitation with dissolved La, Ce and Gd, and W-phase Mg3(Y, Gd)2Zn3 precipitation rich in Y and Gd. In the degradation process of the Mg-membrane, the Mg matrix degraded first, and the rare earth-rich precipitation particles were transferred to a more stable phosphate compound. The element release rate was dependent on the precipitate type and composition. Rare earth elements may be transported mainly through the lymph system. The defects were repaired rapidly by the membranes. The Mg-membrane used in the present study showed excellent biocompatibility and enhanced bone formation in the vicinity of the implants.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3