Significantly Reduced Secondary-Electron-Yield of Aluminum Sheet with Fluorocarbon Coating

Author:

Wang Feipeng,Zhao QiORCID,Li Jian,Wang Kaizheng,Huang Zhengyong,Cui Wanzhao

Abstract

In this work, the surface of Al sheet was coated with a fluorocarbon (FC) thin film by radio frequency (RF) sputtering of polytetrafluoroethylene (PTFE) to investigate the influence of dielectric coatings on the secondary electron yield (SEY) behavior of Al sheets. Atomic-force microscopy (AFM) and energy-dispersive spectroscopy (EDS) were employed to identify the surface topographies and elemental contents of the samples with FC coatings. Water contact angle (WCA) measurements were performed to characterize the surface tension as well as the polar and dispersion components of the samples’ surface. The secondary electron- mission (SEE) behavior of the samples was determined by measuring the SEY coefficients in an ultra-high vacuum chamber with three electron guns. The experimental results indicated that the longer sputtering time effectively led to the increase in coating thickness and a higher ratio of F/C, as well as the continued decrease of surface tension. A quite thin FC coating of about 11.3 nm on Al sheet resulted in the value of maximum SEY (δmax) dropping from 3.02 to 1.85. The further increase in coating thickness beneficially decreased δmax down to 1.60, however, at the cost of a ten-fold thicker coating (ca. 113 nm). It is found that increasing the coating thickness contributes to reducing SEY coefficients as well as suppressing SEE. The results are expected to guide the design of dielectric-coating for SEY reduction as well as multipactor suppression on Al.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference49 articles.

1. Multipactor breakdown in microwave pulses

2. Investigations into multipactor breakdown in satellite microwave payloads;Woode;ESA J.,1990

3. Modeling micro-porous surfaces for secondary electron emission control to suppress multipactor

4. Thermal evaporated hyperbranched Ag nanostructure as an effective secondary-electron trapping surface coating;He;AIP Adv.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3