Thermoformable Conductive Compositions for Printed Electronics

Author:

Shahabadi Seyed Ismail Seyed12,Tan Joel Ming Rui12,Magdassi Shlomo23ORCID

Affiliation:

1. School of Materials Sciene and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

2. Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore

3. Casali Center for Applied Chemistry, Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

The development of three-dimensional printed electronics has garnered significant interest due to the ease of integration of electronic circuitry on 3D surfaces. However, it is still very challenging to achieve the desired conformability, stretchability, and adhesion of conductive pastes used for printing on thermoformable substrates. In this study, we propose the use of novel thermoformable ink composed of copper flakes coated with silver, which enables us to prevent the oxidation of copper, instead of the commonly used silver inks. Various polymer/solvent/flake systems were investigated, resulting in thermoformable conductive printing compositions that can be sintered under air. The best inks were screen printed on PC substrates and were thermoformed using molds with different degrees of strain. The effects of the various components on the thermoforming ability and the electrical properties and morphology of the resulting 3D structures were studied. The best inks resulted in a low sheet resistivity, 100 mΩ/□/mil and 500 mΩ/□/mil before and after thermoforming at 20%, respectively. The feasibility of using the best ink was demonstrated for the fabrication of a thermoformable 3D RFID antenna on PC substrates.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3