Influence of Magnesium Content on the Physico-Chemical Properties of Hydroxyapatite Electrochemically Deposited on a Nanostructured Titanium Surface

Author:

Cotrut Cosmin MihaiORCID,Ungureanu ElenaORCID,Ionescu Ionut Cornel,Zamfir Raluca Ioana,Kiss Adrian EmilORCID,Parau Anca Constantina,Vladescu AlinaORCID,Vranceanu Diana MariaORCID,Saceleanu AdrianaORCID

Abstract

The aim of this research was to obtain hydroxyapatite (HAp)-based coatings doped with different concentrations of Mg on a Ti nanostructured surface through electrochemical techniques and to evaluate the influence of Mg content on the properties of HAp. The undoped and doped HAp-based coatings were electrochemically deposited in galvanostatic pulsed mode on titania nanotubes with a diameter of ~72 nm, being designed to enhance the adhesion of the HAp coatings to the Ti substrate. The obtained materials were investigated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and Fourier-Transform Infra-Red spectroscopy (FTIR). The adhesion of the coatings to the substrate was also evaluated with the help of the “tape-test” and the micro-scratch test. The morphology (SEM) of all the coatings is made of very thin and narrow ribbon-like crystals, with some alterations with respect to the Mg amount in the coatings. Thus, a concentration of 1 mM of Mg in the electrolyte leads to wider and thicker ribbon-like crystals, while a concentration of 1.5 mM in the electrolyte generated a morphology that resembles the undoped HAp. Both phase composition (XRD) and chemical bonds (FTIR) analysis proved the formation of HAp in all coatings. Moreover, according to XRD, all coatings have a strong orientation toward the (002) plane. Irrespective of the Mg content, all coatings registered an average roughness between approx. 500 and 600 nm, while the coating thickness increased after addition of Mg, from a value of 9.6 μm, for the undoped HAp, to 11.3 μm and ~13.7 μm for H/Mg1 and H/Mg2, respectively. In terms of adhesion, it was shown that the coatings a H/Mg2 had a poorer adhesion when compared to H/Mg1 and the undoped HAp (H), which registered similar adhesion, indicating that a concentration of 1.5 mM of Mg in the electrolyte reduces the adhesion of the Hap-based coatings to the nanostructured surface. The obtained results indicated that Mg concentrations up to 1 mM in the electrolyte can enhance the properties of HAp-based coatings electrochemically deposited on a nanostructured surface, while even a slightly higher concentration of 1.5 mM can negatively impact the characteristics of HAp coatings.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3