Cutting Performance of a Longitudinal and Torsional Ultrasonic Vibration Tool in Milling of Inconel 718

Author:

Zhang Hang12,Su Guosheng12,Xia Yan12,Zhang Peirong12,Li Binxun12ORCID,Sun Yujing12,Du Jin12,Fang Bin12

Affiliation:

1. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Shandong Institute of Mechanical Design and Research, Jinan 250031, China

Abstract

Inconel 718 has excellent thermal and chemical properties and is widely used in the manufacture of aerospace parts; however, there are some problems in the machining of Inconel 718, such as a large milling force, serious tool wear, and poor surface quality. In this research, a type of longitudinal–torsional ultrasonic milling (LTUM) tool is designed based on theoretical computations and FEM simulation analysis. To verify the design rationality of the developed LTUM tool, milling experiments are performed. It is verified that the LTUM tool can realize an elliptical vibration path at the tool tip. The resonance frequency of the tool is 21.32 kHz, the longitudinal amplitude is 6.8 µm, and the torsional amplitude is 1.4 µm. In the milling of Inconel 718, the experimental data of LTUM are compared with those of conventional milling (CM). The comparative experiments show that the LTUM tool can effectively lessen the milling force and tool wear in the milling of Inconel 718, improve the surface quality, inhibit the generation of burrs, and improve the chip breaking ability. The application potential of the LTUM tool in high-performance milling of Inconel 718 parts is proven.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Talent Research Project of Qilu University of Technology

Basic Research Project of Science, Education and Industry Integration Pilot Project of Qilu University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3