Abstract
Doping process is widely used to improving emission performance of MgO films thicker than 10 nm via assisting the surface recharge and changing in electron structure. The present paper briefly reviews this strategy in a search for the new materials and structures being effective for secondary electron emission (SEE) and their diagnostics. Then, Metal-Organic Chemical Vapor Deposition (MOCVD) coupled with the specially selected precursor is suggested here as a new technique that transforms the refractory oxides to nanoscale, defect-disordered materials able to solid-solid interaction at 450 °C. Primary experiments have been performed for demanded mixed films based on MgO with ZrO2 and CeO2 additions. A dopant impact on facilitating the formation of oxygen vacancies in the host oxide and on the features of new mixed phases have been studied by new diagnostic means, based primarily on chemical method of differential dissolution. The method brought out the effective solvents that were the probes for identifying the nanoscale and amorphous phases possessing by the different defects on the surface of MgO films and determining contents of these phases. This approach allowed us to explain the origin of mixed phases and to estimate contribution of each from them in the macroscopic SEE properties.
Funder
Russian Foundation for Basic Research
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces