Microstructure and Properties of CoCrFeNi(WC) High-Entropy Alloy Coatings Prepared Using Mechanical Alloying and Hot Pressing Sintering

Author:

Xu Juan,Wang Shouren,Shang Caiyun,Huang Shifeng,Wang YanORCID

Abstract

The CoCrFeNi high-entropy alloy coatings (HEACs) with different weight ratios (10 and 30 wt.%) of WC additions have been prepared using mechanical alloying and a vacuum hot pressing sintering technique on a Q235 steel substrate. The microstructures, microhardness, wear resistance, and corrosion resistance of HEACs were studied. The CoCrFeNi(WC) powders were obtained by mixing the CoCrFeNi HEA powders and WC particles. The sintered products of both HEACs with high relative density contained one solid solution phase with face-centered cubic structure, WC, and unknown precipitate phases. The transition boundary had a good metallurgical bonding with the coating and substrate. The average microhardness values of CoCrFeNi HEACs with 10 and 30 wt.% WC additions reached 475 and 531 HV respectively, which were far higher than that of the substrate (160 HV). Moreover, both coatings exhibited better wear resistance than the substrate under the same wear conditions. The 30 wt.% WC HEAC displayed the lower friction coefficient, and the shallower wear groove depth. The grain refinement strengthening and second-phase particle strengthening could be beneficial to the enhanced hardness and wear resistance of coatings with WC additions. The corrosion behavior of the tested samples in the 3.5 wt.% NaCl solution were investigated using electrochemical polarization measurements. The CoCrFeNi(WC) coatings all revealed the improved corrosion resistance. Especially, a 10 wt.% WC addition remarkably enhanced the comprehensive corrosion resistance and easy passivation of CoCrFeNi HEAC.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3