The Local Distribution of Temperatures and Entropy Generation Rate in an Ideal Counterflow Heat Exchanger

Author:

Dong ZhiminORCID,Du Qinglin

Abstract

The process of heat exchange between two fluids of different temperatures and separated by a solid wall occurs in many engineering applications. Log mean temperature difference and effectiveness-NTU methods are widely used to assist in the design of heat exchangers. However, the two methods focus on overall analysis and cannot show the local temperature distributions. This paper obtains the mathematical solutions to the temperature profiles in an ideal counterflow heat exchanger. The aim of this research is to explain the phenomenon called the “entropy generation paradox”, which indicates a discrepancy between effectiveness and optimal entropy generation. The theoretical analysis reveals that the temperature curves are exponential functions when the heat capacity rates of the two streams are different; otherwise, the curves are linear functions. A heat exchanger is demonstrated to draw the temperature profiles under different working conditions. Local entropy generation rates are determined by the ratio of local stream temperatures in the form of a hook function. To realize a certain heat duty, there are many stream flow rate couples, and each couple results in a different entropy generation profile and obtains a corresponding total entropy generation. The helical steam generator of a high-temperature gas-cooled reactor is analyzed in this article and the principle of equipartition of entropy generation is confirmed. This principle indicates that, among the many working conditions to achieve a certain heat duty, a heat exchanger characterized by a nearly constant entropy production gives the best second law efficiency possible in order to achieve the best energy conversion.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3