Kinetic Modeling of Grain Boundary Diffusion: Typical, Bi-Modal, and Semi-Lamellar Polycrystalline Coating Morphologies

Author:

Jaseliūnaitė JustinaORCID,Povilaitis MantasORCID,Galdikas ArvaidasORCID

Abstract

Polycrystalline coatings and materials are widely used in engineering applications. Therefore, it is important to know their kinetics and mass transport mechanisms. The effect of grain boundaries (GBs) on diffusion in thin films with different morphologies lacks understanding. Numerical studies are necessary to study GB kinetics but are limited to simplified cases. The present work addresses the lack of diffusion studies in more complex morphologies. Diffusion in two-dimensional polycrystalline coatings of typical, bi-modal, and semi-lamellar morphologies was modeled and the influence of the microstructure on the diffusion regimes and the overall rate was identified. Different morphologies with similar diffusion coefficients provided different regimes. The regime depends not only on the total diffusivity and grain/GB diffusivities, but also on the morphological features of the surface. While the fast diffusion pathways of GBs accelerated diffusion, the level of acceleration depends on the morphology since fast pathways and flux areas are limited to GBs. GB distribution is important to the mass transfer process, as GBs accelerate diffusion locally. The overall diffusion rate is generally dependent on the diffusion coefficients ratio. Nevertheless, the level of this dependence relies on the morphology.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3