Controlling the Superconducting Critical Temperature and Resistance of NbN Films through Thin Film Deposition and Annealing

Author:

Pei Yang1ORCID,Fan Qian1,Ni Xianfeng1,Gu Xing1

Affiliation:

1. Institute of Next Generation Semiconductor Materials, Southeast University, Suzhou 215123, China

Abstract

This study investigated the relationship between the superconducting properties, electrical properties, sputtering process parameters, and post-growth annealing of NbN films. Four series of NbN films were deposited by DC magnetron sputtering using different process parameters. With the assistance of a four-probe method, the superconducting performance presented first an increase and then a decreasing trend as the resistance of the prepared films increased, which could be attributed to the variation of the N/Nb ratio in the films. This correlation implied that it is very challenging to fabricate films with both high Tc and high resistance or high Tc and low resistance by adjusting the sputtering process parameters. In order to overcome these bottlenecks, a series of films were deposited on Si, GaN/Si, SiN/Si, AlN/Si, and AlN/sapphire substrates, and the film deposited on Si was annealed at 900 °C. Annealing reduced the stress of the films on the buffer layer and increased the grain size and crystallinity of the films, except for the films on the GaN/Si substrates. This resulted in a significant decrease in the resistivity of the film and a significant increase in the superconducting transition temperature.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3