Author:
Dou Zhongyu,Jiang Haili,Ao Rongfei,Luo Tianye,Zhang Dianxi
Abstract
The use of the magnesium alloy AZ31 is common in aviation and biomedicine; however, this alloy has poor friction and corrosion resistance. Here, mechanical grinding, ultrasonic rolling, and ultrasonic rolling + ion implantation were performed on the magnesium alloy surface to study the effect of the treatment process on the friction and corrosion resistance of the magnesium alloy surface. The results show that the surface roughness of the magnesium alloy treated by ultrasonic rolling + ion injection is reduced more than mechanical grinding and ultrasonic rolling. The friction coefficient is the lowest, the wear resistance is the best, and new phase nitrogen compounds appear on the surface. The results of SBF (simulated body fluid) solution immersion showed that the sample treated via this composite process had the lowest corrosion rate, which was 62.45% and 58.47% lower than that of the mechanically ground samples. The surface was relatively intact after the corrosion test, and the corrosion resistance was the best. These results can provide a new strategy for magnesium alloy surface protection.
Funder
the Key Laboratory of Materials Simulation and Computing of Anshun University
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献