Improving the Surface Friction and Corrosion Resistance of Magnesium Alloy AZ31 by Ion Implantation and Ultrasonic Rolling

Author:

Dou Zhongyu,Jiang Haili,Ao Rongfei,Luo Tianye,Zhang Dianxi

Abstract

The use of the magnesium alloy AZ31 is common in aviation and biomedicine; however, this alloy has poor friction and corrosion resistance. Here, mechanical grinding, ultrasonic rolling, and ultrasonic rolling + ion implantation were performed on the magnesium alloy surface to study the effect of the treatment process on the friction and corrosion resistance of the magnesium alloy surface. The results show that the surface roughness of the magnesium alloy treated by ultrasonic rolling + ion injection is reduced more than mechanical grinding and ultrasonic rolling. The friction coefficient is the lowest, the wear resistance is the best, and new phase nitrogen compounds appear on the surface. The results of SBF (simulated body fluid) solution immersion showed that the sample treated via this composite process had the lowest corrosion rate, which was 62.45% and 58.47% lower than that of the mechanically ground samples. The surface was relatively intact after the corrosion test, and the corrosion resistance was the best. These results can provide a new strategy for magnesium alloy surface protection.

Funder

the Key Laboratory of Materials Simulation and Computing of Anshun University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3