Physicochemical Characterization and Antibacterial Activity of Titanium/Shellac-Coated Hydroxyapatite Composites

Author:

Harwijayanti Widyanita,Ubaidillah UbaidillahORCID,Triyono Joko

Abstract

Titanium and hydroxyapatite are widely used as materials for implants. Titanium has good mechanical properties, good corrosion resistance, and a high modulus of elasticity. Hydroxyapatite has good biocompatibility, bioactivity, and significant osteoinductivity. In this study, powder metallurgy was used as a method to combine titanium and hydroxyapatite for use in implants. Shellac was used as a binder between ceramic and metal due to its lower melting point. The surface morphology and chemical properties were evaluated by scanning electron microscopy–energy dispersive X-ray (SEM-EDX), whereby the SEM revealed the appearance of micropores in the Ti-HA composites during the sintering process, and the EDX showed that the final product had high amounts of Ti and Ca and low P. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses were used to achieve the chemical characterization of composites, whereby a weak diffraction peak was observed in the XRD spectrum of Ti-HA composites, and the FTIR analysis confirmed that the composites had carbonate (CO3)2−, phosphate (PO4)3−, and hydroxyl (OH)− groups. Oxygen was sufficient due to the sintering process being conducted in an air environment. The antibacterial activities were characterized using the disc diffusion method with Escherichia coli and Staphylococcus aureus bacteria, whereby the prepared Ti-HA composites had a greater antibacterial effect on E. coli than on S. aureus. Finally, pH changes were observed during the 24 h incubation. The result showed that the Ti-HA composite did not contain chemical compounds that could cause harmful effects for humans and had good antibacterial activity against E. coli.

Funder

Sebelas Maret University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3