Abstract
The inkjet printing of the functional materials prepared by the sol-gel route is gaining the attention for the production of the variety of the applications not limited to the printed boards, displays, smart labels, smart packaging, sensors and solar cells. However, due to the gelation process associated with the changes from Newtonian to non-Newtonian fluid the inkjet printing of the sol-gel inks is extremely complex. In this study we reveal in-depth rheological characterization of the WO3 sols in which we simulate the conditions of the inkjet printing process at different temperature of the cartridge (20–60 °C) by analyzing the structural and rheological changes taking place during the gelation of the tungsten oxide (WO3) ink. The results provide the information on the stability of the sol and a better insight on the effects of the temperature on the gelation time. Moreover, the information on the temperature and the time window at which the inkjet printing of the sol-gel inks could be performed without clogging were obtained. The WO3 ink was stable in a beaker and exhibited Newtonian flow behavior at room temperature over 3 weeks, while the gelation time decreased exponentially with increasing temperature down to 0.55 h at 60 °C.
Funder
Slovenian Research Agency
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Reference39 articles.
1. Nanoparticle Technology Handbook;Naito,2018
2. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications
3. Electrochromism and Electrochromic Devices;Monk,2007
4. Tungsten oxide polymorphs and their multifunctional applications
5. Review on the versatility of tungsten oxide coatings;Cezarina;Phys. Status Solidi A,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献