Abstract
The fluid leakage channel found in contact mechanical seals belongs to the microchannel category. Thus, upon further inspection, the influence of surface wettability and other factors neglected in previous studies becomes obvious. The porous leakage model of contact mechanical seals considering the surface wettability presented in this paper was based on the Cassie model and slip theory. The variations of the microchannel slip length and the velocity under various wettability conditions were studied and the relationship between the slip length and the apparent contact angle was established. Moreover, using porous media theory, the theoretical model of the leakage rate in contact mechanical seals considers the surface wettability depending on various parameters. The observed parameters included the surface contact angle, sealing medium pressure, viscosity coefficient, fractal dimension, and maximum pore diameter. The simulation results obtained using the proposed model have shown that the leakage rate increases with the increase of the apparent contact angle. Particularly when the contact pressure is small, the influence of the surface wettability is more significant. Furthermore, the leakage rate results obtained via the proposed model were compared to those of existing models. The comparison confirmed that the proposed model is applicable and that the necessity of considering wettability significantly affects the leakage rate calculation accuracy. The proposed model lays a foundation for further improving the calculation accuracy, making it easier for both the researchers and practitioners to suppress the leakage in contact mechanical seals.
Funder
National Key R&D Program of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献