Author:
Zhao Zheng,Chen Shilu,Xiao Yao,Xie Maobin,Yu Wen
Abstract
After traditional osteosarcoma resection, recurrence of tumor is still a major clinical challenge. The combination of chemotherapy and photothermal therapy (PTT) has great potential in improving therapeutic effect. However, the studies using polydopamine (PDA) as photothermal transducing agent to improve the anti-cancer activity of curcumin (CM)-loaded poly (l-lactic acid) (PLLA) microparticles (PLLA/CM) have seldom been investigated. In this study, we reported the synthesis of PDA-coated PLLA/CM microparticles (PDA-PLLA/CM) prepared by PDA coating on the surface of the PLLA/CM microparticles fabricated by solution-enhanced dispersion by supercritical CO2 (SEDS) for chemo-photothermal therapy of osteosarcoma. The average particle sizes of PLLA/CM and PDA-PLLA/CM microparticles with a spherical shape were (802.6 ± 8.0) nm and (942.5 ± 39.5) nm, respectively. PDA-PLLA/CM microparticles exhibited pH- and near-infrared (NIR)-responsive release behavior to promote CM release in the drug delivery system. Moreover, PDA-PLLA/CM microparticles displayed good photothermal conversion ability and photothermal stability attributed to PDA coating. Additionally, the results of in vitro anti-cancer experiment showed that 500 μg/mL PDA-PLLA/CM microparticles had good anti-cancer effect on MG-63 cells and no obvious toxicity to MC3T3-E1 cells. After incubation with PDA-PLLA/CM microparticles for 2 days, NIR irradiation treatment improved the anti-cancer activity of PDA-PLLA/CM microparticles obviously and reduced the cell viability of osteosarcoma from 47.4% to 20.6%. These results indicated that PDA-PLLA/CM microparticles possessed a synergetic chemo-photothermal therapy for osteosarcoma. Therefore, this study demonstrated that PDA-PLLA/CM microparticles may be an excellent drug delivery platform for chemo-photothermal therapy of tumors.
Funder
National Natural Science Foundation of China
Sanya Science and Education Innovation Park of Wuhan University of Technology
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献