Optimization of Thickness Uniformity Distribution on a Large-Aperture Concave Reflective Mirror and Shadow Mask Design in a Planetary Rotation System

Author:

Wang GangORCID,Bai Yunli,Zhao Jing,Wang Li,Zhang Jiyou,Zhou Yuming

Abstract

Improving the spatial resolution of remote sensing satellites has long been a challenge in the field of optical designing. Although the use of large-aperture reflective mirrors significantly improves the resolution of optical systems, controlling the film thickness uniformity remains an issue. The planetary rotation system (PRS) has received significant attention owing to the excellent uniformity of the coating applied to the large-aperture reflective mirror. However, the development of the PRS remains hindered by a lack of research on its properties and the design method of the shadow mask. To address this, we performed a theoretical analysis of the distribution of film thickness and uniformity in the PRS, which is impacted by parameters of geometric configuration in the vacuum chamber. We present a film thickness expression based on Knudsen’s law and the geometric configuration of the vacuum chamber that incorporates an additional shading function. Moreover, the variation of uniformity in the standard and counter PRSs was elucidated by changing the location of the evaporation source. Finally, a fixed-position shadow mask, which was obtained by theoretical design, allows the nonuniformity of the concave reflective mirror (with a 700 mm aperture) to reduce from 2.43% to 0.7%, highlighting the importance of initial shape design.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference17 articles.

1. Optical Thin Films and Coatings: From Materials to Application;Piegari,2018

2. Optical Filter Design and Analysis: A Signal Processing Approach;Madsen,1999

3. Correcting mask for increasing the thickness uniformity of vacuum coatings;Panteleev;Sov. J. Opt. Technol.,1988

4. Emission pattern of real vapor sources in high vacuum: an overview

5. Correction masks for thickness uniformity in large-area thin films

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3