Abstract
In this study, a femtosecond laser was used to pretreat the surface of the Al–Li alloy, the surface micromorphology, roughness, contact angle, and surface wettability of which were adjusted by changing the laser scanning speed, and the sample was bonded into a single joint with polyether ether ketone (PEEK) adhesive. The mechanism of the laser surface treatment affecting the bonding strength of the Al–Li alloy was explored through tensile and shear experiments. The results indicated that optimizing the laser surface treatment parameters could change the surface roughness and surface micromorphology of the Al–Li alloy, so as to change its surface free energy and bonding strength. Compared with the untreated sample, the bonding strength of the Al–Li alloy increased by 81%, 95%, 107%, 91%, and 78% under the treatment of laser scanning at 25, 20, 15, 10, and 5 mm/s, respectively. As a whole, femtosecond laser etching of the Al–Li alloy surface had an important influence on its wettability and bonding performance.
Funder
Guangxi Specially-invited Experts Foundation of Guangxi Zhuang Autonomous Region, China
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献