Effect of Arc Currents on the Mechanical, High Temperature Oxidation and Corrosion Properties of CrSiN Nanocomposite Coatings

Author:

Xiang Yanxiong,Zou Changwei

Abstract

In methods for multi-arc ion plating technology, the behavior and characteristics of the arc spot determine the physical characteristics of arc plasma and the properties of the subsequent deposited coatings. In this paper, the effect of arc currents on the hardness, friction coefficient, high temperature oxidation, and corrosion properties of the CrSiN coatings was studied. According to the XRD and SEM results, with the increase of arc currents, the coatings grew preferentially to the CrN (111) crystal direction, and the CrN (220) crystal phase appeared at high currents of 90 A. In addition, the number of large particles increased when the current exceeded 70 A. The HR-TEM results confirmed the formation of nanocomposite structure of nanocrystalline of CrN embedded into the amorphous phase of Si3N4 as explored by XRD. The maximum hardness was achieved at 3120 Hv when the coatings were deposited under currents around 70 A. However, the hardness values decreased with further increase of arc currents. From the contact of ceramic balls with the wear of coatings, the surface of coatings gradually produced friction marks, and the friction force increased from a steady friction force to a dynamic friction force. The high temperature oxidation results showed that fewer oxides were formed on the surface of the coatings when oxidized at 800 °C. It was also found that CrSiN nanocomposite coatings prepared at an arc current of 70 A had a larger corrosion potential and polarization impedance, which could effectively protect the tool matrix.

Funder

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3